Non-monotonic Logic I

Bridges between classical and non-monotonic consequences

Michal Peliš*

1 Common reasoning

monotonicity

$$\frac{\Gamma \triangleright \varphi}{\Gamma \cup \Delta \triangleright \varphi}$$

can fail

caused by: background knowledge, implicit facts, presuppositions, etc.

An example of common reasoning

Smith entered the office of his boss. He was nervous.

- 1. typically: (x enters the office of his boss) \succ (x is nervous)
- 2. infer: Smith is nervous. (*)
- 3. new info: After all, he did not want to lose his best employee.
- 4. then: (*) is wrong

1.1 Where to use nonmonotonic reasoning

- legal reasoning
- diagnosis
- natural language understanding
- intelligent tutoring systems

^{*}Main theorems, basic notions, and exercises for the course *Non-monotonic logic/Theory* of rational reasoning at the Dpt of logic, Faculty of Philosophy, Charles University in Prague.

1.2 Ways of getting more

- 1. new assumptions
- 2. restricting the set of models and preferential relations among models
- 3. new rules

2 Classical consequence

Consequence relation is a set of pairs $\langle \Gamma, \Delta \rangle$ where Γ and Δ are sets of formulas (Γ is a set of premisses). We will use the version $\langle \Gamma, \{\varphi\} \rangle$ where φ is a formula.

Language of classical propositional logic \mathcal{L}_{CPL} with a subset of signs for atomic formulas $\mathcal{A} = \{p, q, \ldots\}$ and formulas defined as follows:

$$\varphi := p \mid \neg \psi \mid \psi_1 \lor \psi_2 \mid \psi_1 \land \psi_2 \mid \psi_1 \to \psi_2 \mid \psi_1 \leftrightarrow \psi_2$$

Formal system based on language of classical propositional logic: CPL.

• syntactical consequence relation $(\Gamma \vdash \varphi)$ over CPL

$$\psi_0, \psi_1, \ldots, \psi_n = \varphi$$

 $- \psi_i \in \Gamma$ $- \psi_i \in \mathsf{CPL}$ $- \psi_i \text{ is a re}$

 $-\psi_i$ is a result of an application of a rule to some ψ_k,\ldots,ψ_l (where $k,\ldots,l\leq i)$

• semantical consequence relation $(\Gamma \models \varphi)$

(Strong) completeness theorem: $\Gamma \vdash \varphi$ iff $\Gamma \models \varphi$

For classical consequence relation (operation) we write \vdash (Cn). Cn $\Gamma = \{\varphi : \Gamma \models \varphi\}$ or $\{\varphi : \Gamma \vdash \varphi\}$.

2.1 Horn rules

reflexivity (inclusion) If $\varphi \in \Gamma$, then $\Gamma \vdash \varphi$; resp. $\Gamma \subseteq Cn\Gamma$

cumulative transitivity (Cut) If $\Gamma \vdash \psi$, for each $\psi \in \Delta$, and $\Gamma \cup \Delta \vdash \varphi$, then $\Gamma \vdash \varphi$;

resp. if $\Gamma \subseteq \Delta \subseteq \mathsf{Cn}\Gamma$, then $\mathsf{Cn}\Delta \subseteq \mathsf{Cn}\Gamma$.

monotony If $\Gamma \vdash \varphi$ and $\Gamma \subseteq \Delta$, then $\Delta \vdash \varphi$; resp. if $\Gamma \subseteq \Delta$, then $\mathsf{Cn}\Gamma \subseteq \mathsf{Cn}\Delta$. **Exercise 1** Plain transitivity (if $\Gamma \vdash \psi$, for each $\psi \in \Delta$, and $\Delta \vdash \varphi$, then $\Gamma \vdash \varphi$) is equivalent to Cut. Prove it.

Hint: use reflexivity and monotony.

Exercise 2 Idempotence $(Cn\Gamma = Cn(Cn\Gamma))$ is equivalent to Cut. Prove it.

Hint: use reflexivity and monotony.

Exercise 3 Give some examples of logics where $\alpha \vdash \varphi$ implies $\{\alpha, \beta\} \vdash \varphi$ (singleton monotony), but $\alpha \vdash \varphi$ does not imply $(\alpha \land \beta) \vdash \varphi$.

2.2 Compactness

 Γ is satisfiable whenever each finite subset $G\subseteq \Gamma$ is satisfiable.

2.2.1 Maximalizability property

If $\Gamma \not\vdash \varphi$, then there is $\Delta \supseteq \Gamma$ such that $\Delta \not\vdash \varphi$ and Δ is *maximal* (i.e., whenever $\Sigma \supset \Delta$, then $\Sigma \vdash \varphi$). Every CPL-consistent set can be extended to a maximal CPL-consistent set.

Exercise 4 Prove that compactness implies maximalizability property.

3 Supraclassicality

Consequence relation (operation) is supraclassical iff

 $\vdash \subseteq \vdash$

 $(Cn\Gamma \subseteq C\Gamma, \text{ for every } \Gamma).$

3.1 Paraclassicality

Consequence is *paraclassical* whenever it is supraclassical and satisfies Horn rules (reflexivity, Cut, **monotony**).

3.1.1 Uniform substitution

Uniform substitution is a function $\sigma : \mathcal{A} \longrightarrow Fla$.

Exercise 5 Define substitution as a function σ : Fla \longrightarrow Fla to be homomorphic with respect to logical connectives.

Exercise 6 Decide whether

1. $\varphi \vdash \sigma(\varphi)$,

2. if φ is tautology, then $\sigma(\varphi)$ is tautology,

3. if $\Gamma \vdash \varphi$, then $\sigma(\Gamma) \vdash \sigma(\varphi)$,

for each substitution σ .

Theorem 1 If \succ is supraclassical, monotonic, and closed under substitution (if $\Gamma \succ \varphi$, then $\sigma(\Gamma) \succ \sigma(\varphi)$), then $\succ = \vdash$ or \succ is total.

4 Additional background assumptions

Let $K \subseteq Fla$ be a set of background assumptions.

4.1 **Pivotal assumptions**

Definition 1 (pivotal-assumption consequence) $\Gamma \vdash_K \varphi$ *iff* $\Gamma \cup K \vdash \varphi$.

Exercise 7 Show that \vdash_K is paraclassical and compact consequence relation.

Exercise 8 Classical consequence relation satisfies disjunction in the premisses

$$\frac{\Gamma, \alpha \vdash \varphi \qquad \Gamma, \beta \vdash \varphi}{\Gamma, (\alpha \lor \beta) \vdash \varphi}$$

 $Does \vdash_K do the same job?$

Exercise 9 First, find a counterexample of substitution-closing. Second, what will change if $\sigma(K)$ is admitted? Third, let us imagine that K includes substitutional instances of all its members, i.e., $\sigma(\varphi) \in K$ for each $\varphi \in K$.

Theorem 2 Every paraclassical consequence satisfies left classical equivalence, right weakening, and free premiss property.

left classical equivalence If $Cn\Gamma = Cn\Delta$, then $C\Gamma = C\Delta$.

right weakening If $\Gamma \succ \varphi \vdash \psi$, then $\Gamma \succ \psi$.

free premiss property If $\Delta \subseteq \Gamma$, then $\mathsf{C}\Gamma = \mathsf{C}(\mathsf{C}\Delta \cup \Gamma)$.

Exercise 10 Prove Theorem 2.

Theorem 3 (Representation theorem) If \succ is paraclassical, compact, and satisfies disjunction in the premisses, then there is $K \subseteq$ Fla such that $\succ = \vdash_K$.

4.2 Default assumptions

We confront our knowledge database K with a gained data Γ for to keep consistency.

Definition 2 A subset $K' \subseteq K$ is max-consistent with respect to Γ iff $K' \cup \Gamma$ is consistent and every $K'' \supset K'$ is inconsistent wrt Γ .

Definition 3 (default-assumption consequence) $\Gamma \succ_{K} \varphi$ *iff* $K' \cup \Gamma \vdash \varphi$, for each $K' \subseteq K$ max-consistent wrt Γ .

$$\mathsf{C}_K \Gamma = \bigcap \{ \mathsf{Cn}(K' \cup \Gamma) : K \supseteq K' \text{ max-consistent wrt } \Gamma \}$$

Exercise 11 If $K_1, K_2 \subseteq K$ are max-consistent wrt Γ and $K_1 \subseteq K_2$, then $K_1 = K_2$.

Exercise 12 Show disjunction in the premisses.

non-compact, non-monotonic

cautious monotony If $\Gamma \succ_K \delta$, for each $\delta \in \Delta$, and $\Gamma \succ_K \varphi$, then $\Gamma \cup \Delta \succ_K \varphi$.

Exercise 13 Prove that \succ_K is cautiously monotonic.

Hint: Prove, first, that if K' is max-consistent wrt Γ and $\Gamma \cup K' \vdash \delta$, then K' is max-consistent wrt $\Gamma \cup \{\delta\}$, for each $K' \subseteq K$.

Exercise 14 $\vdash \subseteq \vdash_K \subseteq \vdash_K$

Exercise 15 *Prove: if* $K \cup \Gamma$ *is consistent, then* $Cn(K \cup \Gamma) = Cn_K \Gamma = C_K \Gamma$.

syntax dependency for $K \neq CnK$; on the other hand:

Theorem 4 If K = CnK and K is inconsistent wrt Γ , then $C_K\Gamma = Cn\Gamma$.

5 Restricting the set of models (valuations)

Let V be a set of all valuations (models). $W \subseteq V$ is a restricted set of valuations.

5.1 Pivotal valuations

Definition 4 (pivotal-valuation consequence) $\Gamma \vdash_W \varphi$ *iff* $(\forall v \in W)(v \models \Gamma \Rightarrow v \models \varphi)$.

non-compact

Definition 5 W is definable set of valuations iff there is $K \subseteq$ Fla such that $W = \{v \in V : v \models K\}.$

Theorem 5 The pivotal-assumption consequences are precisely the pivotal-valuation consequences determined by a definable $W \subseteq V$.

Theorem 6 The pivotal-assumption consequences are precisely the pivotal-valuation consequences that are compact.

Exercise 16 Let us have a finite set of atomic formulas $\{p_1, \ldots, p_n\}$ that generates formulas in propositional language. Show that the pivotal-assumption consequences are precisely the pivotal-valuation consequences in this special case.

5.2 Default valuations

We introduce preferences among models (valuations) in W. Let $\succ \subseteq W^2$ be irreflexive and transitive. The couple $\langle W, \succ \rangle$ is called preferential models. We say that $v \in W$ is a minimal model (valuation) for Γ iff $v \models \Gamma$ and $(\forall u \prec v)(u \not\models \Gamma)$; let us write $v \models_{\succ} \Gamma$.

Definition 6 (default-valuation consequence) $\Gamma \models_{W \succ} \varphi$ *iff* $v \models_{\succ} \Gamma$ *implies* $v \models \varphi$.

Exercise 17 $\vdash \subseteq \vdash_W \subseteq \vdash_{W \succ}$.

Hint: \vdash_W is a special case of $\succ_{W\succ}$.

non-monotonic, non-transitive cautious monotony for well-founded ≻-relations

Exercise 18 Prove that cautious monotony can fail.

Hint: consider infinite descending chain.

consistency preservation fails

consistency preservation $\Gamma \succ \bot \Rightarrow \Gamma \vdash \bot$.

Exercise 19 Let \succ be well founded. Prove that $\Gamma \mid_{W \succ} \bot \Rightarrow \Gamma \vdash_{W} \bot$.

Exercise 20 Prove: if $W_2 \subseteq W_1 \subseteq V$, then $\vdash_{W_1} \subseteq \vdash_{W_2}$. What about $\vdash_{W_1 \succ} \subseteq \vdash_{W_2}$?

6 Additional rules

Let R be a set of rules: $R = \{ \langle \varphi, \psi \rangle : \varphi, \psi \in Fla \}$. $R(\Gamma) = \{ \psi : \langle \varphi, \psi \rangle \in R \text{ and } \varphi \in \Gamma \}$ $\Gamma \text{ is closed under } R \text{ iff } R(\Gamma) \subseteq \Gamma.$

6.1 Pivotal rules

Definition 7 (pivotal-rule consequence) $\Gamma \vdash_R \varphi$ *iff* $\varphi \in \Delta$ *for every* $\Delta \supseteq \Gamma$ *such that* Δ *is closed under* Cn *and R*.

Exercise 21 Is Fla such a set?

Exercise 22 Is \vdash_R compact and paraclassical?

neither disjunction in the premisses nor contraposition

contraposition If $\varphi \succ \psi$, then $\neg \psi \succ \neg \varphi$.

Exercise 23 Show that contraposition is valid for \vdash_K and \vdash_W , but neither for \vdash_K nor for $\vdash_{W\succ}$.

Theorem 7 The pivotal-asymption consequences are precisely the pivotal-rule ones that satisfy disjunction in the premisses.

Theorem 8 Let \mathcal{K} be a set of all pivotal-assumption consequences, \mathcal{W} be a set of all pivotal-valuation consequences, and \mathcal{R} be a set of all pivotal-rule consequences. Then $\mathcal{K} = \mathcal{W} \cap \mathcal{R}$.

For every set of formulas Γ , the following set $\mathsf{Cn}(\Gamma \cup \{(\varphi \to \psi) : \langle \varphi, \psi \rangle \in R\})$ is equal to $\mathsf{Cn}_R\Gamma$ with *disjunction in the premisses*. (Makinson—van der Torre theorem) As a conclusion we get

Theorem 9 $\operatorname{Cn}_R\Gamma \subset \operatorname{Cn}(\Gamma \cup \{(\varphi \to \psi) : \langle \varphi, \psi \rangle \in R\}), \text{ for every } \Gamma.$

Theorem 10 (Representation theorem) If \succ is compact and paraclassical, then there is R such that $\succ = \vdash_R$.

6.2 Default rules

The application of a rule is under consistency constraints. Let us suppose, there is an ordering \succ of rules in R.

Definition 8 (default-rule consequence) $C_{R\succ}\Gamma = \bigcup \{\Gamma_n : n < \omega\}$ such that

- 1. $\Gamma_0 = Cn\Gamma$
- 2. If there is a rule $\langle \varphi, \psi \rangle \in R$ such that $\varphi \in \Gamma_n$ and $\psi \notin \Gamma_n$ and $\Gamma_n \cup \{\psi\}$ is consistent, then $\Gamma_{n+1} = \mathsf{Cn}(\Gamma_n \cup \{\psi\})$. Otherwise: $\Gamma_{n+1} = \Gamma_n$.

Exercise 24 $\vdash \subseteq \vdash_{R\succ} \subseteq \vdash_{R}$.

References

D. Makinson. Bridges from Classical to Nonmonotonic Logic. King's College, 2005.