Introduction to Nonmonotonic Reasoning Michal Peliš March 29, 2005 http://web.ff.cuni.cz/~pelis

1 Consequence relations

background-logic: classical propositional (predicate) logic (\mathcal{L})

Consequence relation is a set of pairs $\langle \Gamma, \Delta \rangle$ where Γ and Δ are sets of formulas (Γ is a set of premises).

- $\langle \Gamma, \{\varphi\} \rangle$ where φ is a formula
- syntactical consequence relation $(\Gamma \vdash \varphi)$

$$\psi_0, \psi_1, \ldots, \psi_n = \varphi$$

- $\psi_i \in \Gamma$ $\psi_i \in \mathcal{L}$
- $-\psi_i$ is a result of an application of a rule to some ψ_k,\ldots,ψ_l (where $k,\ldots,l\leq i)$
- semantical consequence relation $(\Gamma \models \varphi)$

Completeness theorem: $\Gamma \vdash \varphi$ iff $\Gamma \models \varphi$

$$Cn\Gamma = \{\varphi : \Gamma \models \varphi\} \text{ OR } \{\varphi : \Gamma \vdash \varphi\}$$

2 Important properties of *Cn*

• reflexivity

 $\Gamma \subseteq \mathit{Cn}\Gamma$

• cumulative transitivity (Cut)

$$\Gamma \subseteq \Delta \subseteq Cn\Gamma \quad \Rightarrow \quad Cn\Delta \subseteq Cn\Gamma$$

• monotony

$$\Gamma \subseteq \Delta \quad \Rightarrow \quad Cn\Gamma \subseteq Cn\Delta$$

3 Example of common reasoning

Smith entered the office of his boss. He was nervous.

1. **typically**: (x enters the office of his boss) \rightsquigarrow (x is nervous)

- 2. infer: Smith is nervous. (*)
- 3. new info: After all, he did not want to lose his best employee.
- 4. then: (*) is wrong

4 Where to use nonmonotonic reasoning

- legal reasoning
- diagnosis
- natural language understanding
- intelligent tutoring systems

5 Ways of getting more

- 1. Add new (believed) assumptions.
- 2. Add preferential relations among models.
- 3. Add new rules.

5.1 New assumptions

- Γ background knowledge
- B "what is believed"

$$\varphi \in Cn^B \Gamma$$
 iff $\Gamma \cup B \models \varphi$

(monotonic)

5.2 Default assumptions

Consistency: M is CONS iff $CnM \neq Fla$. Let $B_1 \subseteq B$. B_1 is MaxCONS wrt Γ iff

1. B_1 is CONS wrt Γ ,

2.
$$\forall D \subseteq B(B_1 \subset D \Rightarrow D \text{ is not CONS wrt } \Gamma).$$

 $C^B \Gamma = \cap \{ Cn(\Gamma \cup B_1) : B \supseteq B_1 \in \text{MaxCONS wrt } \Gamma \}$

- nonmonotony
- cautious monotony

$$\Gamma \subseteq \Delta \subseteq C^B \Gamma \Rightarrow C^B \Gamma \subseteq C^B \Delta$$

5.3 Preferred models (valuations)

- $v \models \varphi$ iff $v(\varphi) = 1$
- V set of all valuations
- $\langle V, \prec \rangle \prec$ is a strict partial ordering on V
- $v \models_{\prec} \varphi$ iff
 - 1. $v \models \varphi$,

2.
$$\forall v_1 (v \prec v_1 \Rightarrow v_1 \not\models \varphi).$$

$$C^{\langle V,\prec\rangle}\Gamma=\{\varphi:\forall v(v\models_{\prec}\Gamma\Rightarrow v\models\varphi)\}$$

- nonmonotony
- *not* cautious monotony
 - cautious monotony:

$$\Gamma \subseteq \Delta \subseteq C^B \Gamma \Rightarrow C^B \Gamma \subseteq C^B \Delta$$

- *not* consistency preservation
 - consistency preservation:

$$\Gamma \in \text{CONS} \Rightarrow C^B \Gamma \in \text{CONS}$$

5.4 Default rules

 $\delta = \frac{\varphi : \psi_1, \dots, \psi_n}{\chi}$ δ is *applicable* to $E \ (E = CnE)$ iff $\varphi \in E$ and $\neg \psi_i \notin E$ (for all $i \in \{1, \dots, n\}$) Default theory: $\langle \Gamma, D = \{\delta_0, \delta_1, \dots\} \rangle$ Extension (operational definition)

5.4.1 Processes and extensions of a default theory $\langle \Gamma, D \rangle$

E	П	test 1	Out	test 2
$Cn\Gamma$	δ_0	appl. to E ?	$\neg \psi_i$	$E \cap Out = \emptyset?$
$Cn(\Gamma \cup \{\chi\})$	δ_1			
:	:	:	:	:
E is extension of $\langle \Gamma, D \rangle$ iff				

1. all applicable δ 's were applied (process Π is *closed*),

2. $E \cap Out = \emptyset$ (process Π is *successful*).

5.4.2 Examples

1. $\Gamma = \emptyset, D = \{\frac{:\alpha}{\neg \alpha}\}$ 2. $\Gamma = \{\neg p, q\}, D = \{\frac{q:\neg r}{p}\}$ 3. $\Gamma = \emptyset, D = \{\delta_0, \delta_1\}$ • $\delta_0 = \frac{:p}{\neg q}$ • $\delta_1 = \frac{:q}{r}$ 4. $\Gamma = \{\text{green, drivLic}\}, D = \{\delta_0, \delta_1\}$ • $\delta_0 = \frac{\text{green:}\neg \text{likeCar}}{\neg \text{likeCar}}$ • $\delta_1 = \frac{\text{drivLic:} \text{likeCar}}{\text{likeCar}}$

5.4.3 Properties

• minimality of extensions

$$E, F$$
 extensions of $\langle \Gamma, D \rangle$. $E \subseteq F \Rightarrow E = F$

- consistency preservation
- nonmonotony (in both Γ and D)

6 References

- 1. Antoniou, G. Nonmonotonic Reasoning. MIT Press, 1997.
- 2. Makinson, D. Bridges between Classical and Nonmonotonic Logic. (web)
- 3. Meyer, J.-J. Ch. and van der Hoek, W. *Epistemic Logic for AI and Computer Science*. Cambridge Univ. Press, 1995.
- 4. Brewka, G. Nonmonotonic Reasoning. Cambridge Univ. Press, 1991.