Non-monotonic Logic II

Default logic

Michal Peliš*

1 Default reasoning and rules

1.1 Default theories

1.1.1 Default rules

$$d = \frac{\varphi : \psi_1, \dots, \psi_n}{\chi}$$

- φ —prerequisite
- ψ_1, \ldots, ψ_n —justifications (j(d)—set of all justifications of d)
- χ —consequent (c(d)—consequent of the rule d)

Informal interpretation: If a prerequisite φ is known and all justifications ψ_1, \ldots, ψ_n can be consistently supposed, then conclude χ .

Default theory Let Γ be a set of formulas and D a set of defaults (i.e., default rules). Deafult theory T is a couple (Γ, D) .

1.1.2 Operational semantics

Let us form sequences of defaults from D without multiple occurence: $\Pi_1 = \langle d_0, d_1, \ldots \rangle$, Π_2 , etc. The ordering of defaults is an order of their application. For each Π we define:

$$In\Pi = \mathsf{Cn}(\Gamma \cup \{c(d) : d \in \Pi\})$$

$$Out\Pi = \{\neg \psi : (\exists d \in \Pi)(\psi \in j(d))\}$$

Both sets must be understood as arising step by step, i.e., default by default, according to an order in $\Pi.$

A default $d = \frac{\varphi:\psi_1,...,\psi_n}{\chi}$ is applicable iff φ is included in (so far arised) $In\Pi$ and $\psi_1,...,\psi_n$ are not in a contradiction with (so far arised) $In\Pi$.

^{*}Main theorems, basic notions, and exercises for the course *Non-monotonic logic/Theory* of rational reasoning at the Dpt of logic, Faculty of Philosophy, Charles University in Prague.

Definition 1 Π is process of T iff each $d \in \Pi$ is applicable.

Definition 2 Let Π be a process.

- Π is successful iff $In\Pi \cap Out\Pi = \emptyset$. Otherwise it is failed.
- Π is closed iff all defaults from D applicable (in the order) are in Π .

Definition 3 (extension) A set of formulas E is an extension of T iff there is a successful and closed process Π such that $E = In\Pi$.

Exercise 1 Let $T = (\Gamma, D)$ be a default theory where $\Gamma = \emptyset$ and $D = \{\frac{:\alpha}{\neg \alpha}\}$. Check whether $\Pi_1 = \langle \rangle$ and $\Pi_2 = \langle \frac{:\alpha}{\neg \alpha} \rangle$ are processes. If so, are they successful and closed?

Solution: Since all defaults in Π_1 are applicable, Π_1 is a process, but it is not closed because of the applicability of $\frac{i\alpha}{\neg\alpha}$. Let us check this. There is no prerequisite and α is consistent with the 0-step $In\Pi_2 = Cn\Gamma$. It means that Π_2 is a closed process. After the application of the default we get $In\Pi_2 =$ $Cn(\Gamma \cup \{\neg\alpha\})$ and $Out\Pi_2 = \{\neg\alpha\}$. Thus, Π_2 is failed. We can conclude that Thas no extension.

Exercise 2 Let $\Gamma = \{\neg p, q\}$ and $D = \{\frac{q:\neg r}{p}\}$. Has $T = (\Gamma, D)$ any extension?

Exercise 3 Let $T = (\emptyset, \{\frac{:p}{\neg q}, \frac{:q}{r}\})$. Try to find an extension.

Hint: There are two closed processes: $\langle \frac{:p}{\neg q} \rangle$ and $\langle \frac{:q}{r}, \frac{:p}{\neg q} \rangle$. Are they successful?

Exercise 4 Let $\Gamma = \{ studentOfPhilFaculty, studentOfLogic \}$ and $D = \{ d_0, d_1 \}$ where

d₀ = <u>studentOfPhilFaculty</u> :-<u>likeMath</u> -<u>likeMath</u>
d₁ = <u>studentOfLogic</u> :<u>likeMath</u> <u>likeMath</u>

Find any extension.

Hint: There are two extensions.

Exercise 5 Why do we not require $Out\Pi$ to be deductively closed?

Fact 1 (minimality of extensions) Let E_1, E_2 be extensions of T and $E_1 \subseteq E_2$, then $E_1 = E_2$.

Exercise 6 Prove Fact 1.

Theorem 1 (consistency preservation) $T = (\Gamma, D)$ has an inconsistent extension iff $\Gamma \vdash \bot$.

As a consequence we get

Fact 2 If T has an inconsistent extension E, then E is its only extension.

Exercise 7 Let $T = (\Gamma, D)$. Prove: if $\Gamma \cup \{\psi_1 \land \ldots \land \psi_n \land \chi : \frac{\varphi:\psi_1, \ldots, \psi_n}{\chi}\}$ is consistent, then T has exactly one extension.

Theorem 2 (cautious monotony in declaratives) Let *E* be an extension of $T = (\Gamma, D)$, then *E* is an extension of $T' = (\Gamma \cup \Delta, D)$ for every $\Delta \subseteq E$.

Fact 3 Every finite process of a default theory T can be extended to a closed process.

Exercise 8 Prove Fact 3.

1.2 Normal default theories

Normal default theories include only rules of the form

$$\frac{\varphi:\chi}{\chi}$$

See, e.g., Exercise 4.

Theorem 3 Let T be a normal default theory. If Π is a process of T, then Π is successful.

From Fact 3 and Theorem 3 we get

Theorem 4 (existence of extensions) If T is a normal default theory, then T has an extension.

Theorem 5 (monotony in defaults) Let $T_1 = (\Gamma, D_1)$ and $T_2 = (\Gamma, D_2)$ be normal default theories such that $D_1 \subseteq D_2$. Then each extension E_1 of T_1 is a subset of some extension E_2 of T_2 , i.e., $E_1 \subseteq E_2$.

See Exercise 4: putting both extensions together we get an inconsistent set.

Theorem 6 (orthogonality of extensions) If a normal default theory T has two different extensions E_1 and E_2 , then $E_1 \cup E_2$ is inconsistent.

Fact 4 If $T = (\Gamma, D)$ has two different extensions, then $\Gamma \not\vdash \bot$.

Exercise 9 Prove Fact 4. Is it valid for general default theories?

Exercise 10 Expanding the set of defaults of a normal default theory T does not decrease the number of extensions.

Hint: Take $T_1 = (\Gamma, D_1)$, $T_2 = (\Gamma, D_2)$ such that $D_1 \subseteq D_2$ and show that two different extensions of T_1 cannot be included in one extension of T_2 . Use Theorem 6.

1.2.1 Representation in normal default theories

Definition 4 Two default theories are equivalent $(T_1 \equiv T_2)$ iff T_1 and T_2 have exactly the same extensions.

Exercise 11 1. If $Cn\Gamma_1 = Cn\Gamma_2$, then $(\Gamma_1, D) \equiv (\Gamma_2, D)$, for every D.

- 2. $(\Gamma, D) \equiv (\emptyset, D \cup \{\frac{\cdot}{\varphi} : \varphi \in \Gamma\}).$
- 3. Let $d_0 = \frac{\varphi:\psi_1,...,\psi_n}{\chi_1 \wedge \chi_2}$, $d_1 = \frac{\varphi:\psi_1,...,\psi_n}{\chi_1}$ and $d_2 = \frac{\varphi:\psi_1,...,\psi_n}{\chi_2}$. Then $(\Gamma, D \cup \{d_0\}) \equiv (\Gamma, D \cup \{d_1, d_2\})$, for every Γ and D.
- 4. Let $d_0 = \frac{\varphi:\alpha_1 \vee \alpha_2, \psi_1, \dots, \psi_n}{\chi}$, $d_1 = \frac{\varphi:\alpha_1, \psi_1, \dots, \psi_n}{\chi}$ and $d_2 = \frac{\varphi:\alpha_2, \psi_1, \dots, \psi_n}{\chi}$. Then $(\Gamma, D \cup \{d_0\}) \equiv (\Gamma, D \cup \{d_1, d_2\})$, for every Γ and D.

Definition 5 Let \mathcal{D} be a class of default theories. A theory T is representable in \mathcal{D} iff there is a theory $T' \in \mathcal{D}$ such that $T \equiv T'$.

Exercise 12 Let \mathcal{N} be a class of all normal default theories. Show that \mathcal{N} does not represent all default theories.

Hint: Theorem 4 and, e.g., Exercise 1.

Exercise 13 Let \mathcal{N} be a class of all normal default theories. Show that \mathcal{N} does not represent all default theories possessing extensions, either.

Hint: Consider a theory $(\emptyset, \{\frac{:\neg p}{q}, \frac{:\neg q}{p}\})$, make its extensions and use Theorem 6.

References

[1] G. Antoniou. Nonmonotonic Reasoning. The MIT Press, 1997.